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Abstract. Using a histogram Monte Carlo simulation method, we calculate the existence
probabilityEp for bond percolation on simple cubic (sc) and body-centred cubic (bcc) lattices,
and site percolation on sc lattices with free boundary conditions. TheR1 spanning rule
considered by Reynolds, Stanley, and Klein is used to define percolating clusters. We find
thatEp for such systems has very good finite-size scaling behaviour and the value ofEp at the
critical point is universal and is about 0.265± 0.005.

The existence probabilityEp(L, p), which is the probability that a system of linear size
L percolates at occupation probabilityp, is an essential quantity in renormalization group
(RG) approaches to percolation problems [1–3].Ep was called the crossing probability
by Langlandset al [4, 5] and the spanning probability by Ziff [6]. In the limitL → ∞,
Ep(L, p) approaches the step function2(p−pc), wherepc is the critical threshold [7]. In
this case, if we writeEp ∼ (p−pc)

a, then the critical exponenta is zero. Therefore,Ep is
also an ideal quantity for studying finite-size scaling functions and universality because we
need not scaleEp to plot it as a function of the scaling variable [7–11]. There have already
been extensive studies ofEp for percolation on two-dimensional (2d) lattices [2–6, 8–12].
Using a histogram Monte Carlo simulation method (HMCSM) [2, 3], in this letter we study
finite-size scaling and universality ofEp for percolation on 3d lattices.

In 1992, Langlands, Pichet, Pouliot, and Saint-Aubin (LPPS) [4] proposed that when
aspect ratios for square (sq), honeycomb (hc), and plane triangular (pt) lattices are in the
proportions 1:

√
3:
√

3/2, then site and bond percolation on such lattices have the same
value ofEp at the critical point. In 1992, Cardy used a conformal theory to write down
a formula for criticalEp as a function of aspect ratio for percolation on lattices with
free boundary conditions [5], which was confirmed by LPPS’s numerical calculations [4].
Cardy and LPPS did not discuss the values ofEp for p 6= pc. In 1995–1996, we applied
the HMCSM to calculateEp, the percolation probabilityP , and the probability of finding
exactly n percolating clusters,Wn, for site and bond percolation on finite sq, hc, and pt
lattices [11–14] using the scaling variablez = (p − pc)L

1/ν . By using the LPPS relative
proportions of aspect ratios [4] and non-universal metric factors [15], we found universal
finite-size scaling functions forEp, P , andWn of six different site and bond percolation
models on planar lattices [11–14].
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In order to investigate the universality of criticalEp in higher dimensions, Staufferet al
[16, 17] performed a series of simulations for bond and site–bond percolation on three- to
six-dimensional hypercubic lattices. In particular, they found that for both bond and site–
bond percolation on cubic lattices with free boundary conditionsEp(L, pc) approaches 0.42
for L up to 1001 using theR1 percolation rule defined by Reynoldset al [1]. Since Stauffer
et al did not consider the universality of criticalEp for different types of lattices and their
data are not very precise, more work on the universality of criticalEp for d > 3 is needed.

In this letter, we use the HMCSM [2] to calculateEp for bond percolation on simple
cubic (sc) and body-centred cubic (bcc) lattices, and site percolation on sc lattices, which
have free boundary conditions. The bonds (sites) of the first plane are randomly occupied
with probabilityp as are other planes of the lattices. TheR1 spanning rule considered by
Reynoldset al [1] is used to define percolating clusters. We find thatEp for such systems
has very good finite-size scaling behaviour and the value ofEp at the critical point is
universal and is 0.265± 0.005, which is different from the value 0.42 obtained by Stauffer
and his coworkers [16]. To check the reliability of our result, we prepared two independent
computer programs. The results obtained from the two programs are consistent.

In this letter, both sc and bcc lattices are considered to be a cubic system, which is
described by anL×L×L lattice. Therefore, a 2× 2× 2 bcc lattice includes eight sites at
the corner and one site in the centre. Here we define the effective linear dimension of the
lattice,Leff, as the cubic root of the total number of lattice sites. For example,Leff is equal
to 2 and 91/3 for the 2× 2× 2 sc lattice and 2× 2× 2 bcc lattice, respectively.

Figure 1. The existence probabilityEp(L, p) for bond percolation (BP) on bcc lattices, BP on
sc lattices, and site percolation (SP) on sc lattices.

Here we briefly describe the HMCSM for bond percolation onL × L × L sc and bcc
lattices. The extension to site percolation is straightforward. In bond percolation on a
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Figure 2. The calculatedpc(L1, L2) − p0(G) as a function of(L1)
−1/ν
eff , wherepc(L1, L2) is

obtained from equation (4),Leff is the cubic root of the number of lattice sites, and values of
p0(G) for BP on bcc lattice, BP on sc lattice, and SP on sc lattice are 0.180, 0.245, and 0.310,
respectively. The symbolsM, ∇ and� on the vertical axis correspond to 0.180 25± 0.000 15,
0.248 810± 0.000 050, and 0.311 605± 0.000 010, respectively.

d-dimensional latticeG of N sites,E bonds, and linear dimensionL, each bond ofG is
occupied with probabilityp, where 06 p 6 1. A cluster which extends from a given side
of G to the opposite side is a percolating cluster. The subgraph with percolating clusters is
a percolating subgraph and is denoted byG′p, otherwise the subgraph is an non-percolating
subgraph. Then, we have

Ep(L, p) =
∑
G′p

pb(G
′
p)(1− p)E−b(G′p) (1)

whereb(G′p) is the number of occupied bonds inG′p.
To carry out HMCSM, we first choosew different values ofp. For a givenp = pj ,

1 6 j 6 w, we generateNR different subgraphsG′. The data obtained from thewNR
differentG′ are then used to construct two arrays of numbers of lengthE with elements
Np(b) andNf (b), 0 6 b 6 E, which are, respectively, the total numbers of percolating
subgraphs withb occupied bonds and non-percolating subgraphs withb occupied bonds. If
wNR is very large, we can use the histograms to calculate approximateEp for any value of
the bond occupation probabilityp [2]:

Ep(L, p) =
E∑
b=0

pb(1− p)E−bCEb
Np(b)

Np(b)+Nf (b) . (2)

If we obtain Ep(L1, p) and Ep(L2, p) for two similar latticesG1 and G2 of linear
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Figure 3. The calculated criticalEp(L, pc) for BP on bcc lattices, BP on sc lattices, and SP on
sc lattices as a function of 1/Leff.

dimensionsL1 andL2, respectively, the RG transformation fromG1 to G2 is given by

Ep(L2, p
′) = Ep(L1, p) (3)

which gives the renormalizedp′ as a function ofp. The fixed point of (3) gives the critical
point pc, i.e.

Ep(L2, pc) = Ep(L1, pc). (4)

The pc of (4) depends onL1 and L2 and will be denoted bypc(L1, L2). For site
percolation on square lattices, Huet al [18] found thatpc(L1, L2) obtained by cell-to-cell RG
transformation approaches its limiting value,pc, quicker than cell-to-site RG transformation
and the cell-to-cell scheme is insensitive to the scaling power used in the extrapolation of
pc.

We use (2) to evaluateEp(L, p) for bond percolation (BP) on sc and bcc lattices and
a similar equation to evaluateEp(L, p) for site percolation (SP) on sc lattices for several
linear dimensions of the lattices. Typical results for BP on 60× 60× 60 and 80× 80× 80
bcc lattices, BP on 80× 80× 80 and 100× 100× 100 sc lattices, and SP on 80× 80× 80
and 128× 128× 128 sc lattices are shown in figure 1.

For BP on sc lattices, pairs of linear dimensions (L1, L2) for equation (4) are chosen
to be (16, 8), (32, 16), (64, 32), (80, 64), and (100, 80) and the correspondingpc(L1, L2) are
0.252 41± 0.000 12, 0.249 76± 0.000 09, 0.248 97± 0.000 05, 0.248 90± 0.000 06, and
0.248 87± 0.000 06, respectively. We plot these data as a function of(L1)

−1/ν
eff in figure 2,

where the numerical value ofyt (= ν−1) = 1.14±0.01 [19] is used. As(L1)
−1/ν
eff approaches

zero, the values ofpc(L1, L2) approach the value of 0.248810± 0.000050 obtained by Ziff
and Stell [19], which is represented by a down triangle on the vertical axis of figure 2.



Letter to the Editor L115

Figure 4. The calculatedEp of BP on bcc lattices, BP on sc lattices, and SP on sc lattices as a
function of x, wherex = (p − pc)L

yt
eff. The finite-size scaling function isF(x).

For SP on sc lattices, pairs of linear dimensions (L1, L2) are chosen to be (16, 8), (32, 16),
(64, 32), (80, 64), and (128, 80) and the correspondingpc(L1, L2) are 0.313 77± 0.000 08,
0.312 065± 0.000 08, 0.311 70± 0.000 09, 0.311 537± 0.000 11, and 0.311 62± 0.000 12,
respectively. These values shown in figure 2 approach the value of 0.311605± 0.000010
obtained by Ziff and Stell [19], which is denoted by a square on the vertical axis of figure 2.
For BP on bcc lattices, pairs of linear dimensions (L1, L2) are chosen to be (10, 8), (20, 10),
(40, 20), (60, 40), and (80, 60) and the correspondingpc(L1, L2) are 0.183 67± 0.000 12,
0.181 44± 0.000 06, 0.180 55± 0.000 07, 0.180 36± 0.000 07, and 0.180 32± 0.000 06,
respectively. These values shown in figure 2 approach the value of 0.180 25± 0.000 15
obtained by Adleret al [20], which is denoted by a up triangle on the vertical axis of
figure 2.

The criticalEp(L, pc)’s evaluated atpc = 0.2488, 0.3116, and 0.1803 for BP on sc
lattices, SP on sc lattices, and BP on bcc lattices, respectively, are shown in figure 3, in
which the horizontal axis is 1/Leff. The numbers of samples (i.e. the value ofNR) for BP on
sc lattices are 50 000, 90 000, 90 000, 90 000, 450 000, and 450 000 forL = 100, 80, 64, 32,
16, and 8, respectively. The numbers of samples for BP on bcc lattices are 50 000, 90 000,
90 000, 270 000, 450 000, and 900 000 forL = 80, 60, 40, 20, 10, and 8, respectively. The
numbers of samples for SP on sc lattices are 90 000, 90 000, 180 000, 180 000, 450 000,
and 900 000 forL = 128, 64, 32, 16, and 8, respectively. Based on visual evaluation of
figure 3, we extrapolate that the curves for BP and SP on sc lattices and BP on bcc lattices
all approach values of 0.265± 0.005 as 1/Leff → 0.

Using the numerical values ofyt (= ν−1) = 1.14± 0.01 [19] andpc calculated in this
letter, we plotEp(L, p) as a function ofx = (p − pc)L

yt
eff in figure 4, which shows that
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Figure 5. Results for two independent calculations ofEp and the percolation probabilityP
as a function ofp for BP on a 64× 64× 64 sc lattice with free boundary conditions andR1

spanning rule. TheEp functions are represented by full and dotted curves. TheP functions are
represented by dashed and long-dashed curves. The vertical full line goes through the critical
point pc.

Ep has well defined finite-size scaling behaviour for these three models and the obtained
finite-size scaling function is denoted byF(x). Since we obtain the nice finite-size scaling
behaviour shown in figure 4, we expect that our critical valueEp = 0.265±0.005 can well
representEp(L, pc) asL→∞. However, our valueEp = 0.265± 0.005 is quite different
from 0.42 obtained by Staufferet al [16].

To check the reliability of our result, we used both FORTRAN and C computer languages
and different random number generators to prepare two independent computer programs.
Typical calculated results forEp and the percolation probabilityP of bond percolation on
a 64× 64× 64 sc lattice are plotted in figure 5, which shows that the results obtained from
two programs are consistent.

In [21], Hu pointed out that Hu, Lin and Chen (HLC) [11] and Hovi and Aharony
(HA) [22] used different definitions of periodic boundary conditions so that HLC and HA
obtained different criticalEp for L × L square lattices. The inconsistency of our critical
Ep, 0.265± 0.005, and that of Staufferet al [16], 0.42, suggests that the two groups use
different definitions offree boundary conditions.

In summary, we have found universality of criticalEp for site and bond percolation
on sc and bcc lattices. We have also found universality of criticalWn for site and bond
percolation on 3d lattices, which will be published elsewhere [23].

We thank J G Dushoff for a critical reading of the paper. This work was supported by
the National Science Council of the Republic of China (Taiwan) under grant Nos NSC
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