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Abstract. Using a histogram Monte Carlo simulation method, we calculate the existence
probability E,, for bond percolation on simple cubic (sc) and body-centred cubic (bcc) lattices,
and site percolation on sc lattices with free boundary conditions. Rhespanning rule
considered by Reynolds, Stanley, and Klein is used to define percolating clusters. We find
that E,, for such systems has very good finite-size scaling behaviour and the valjeaifthe
critical point is universal and is about2Z®5+ 0.005.

The existence probability, (L, p), which is the probability that a system of linear size
L percolates at occupation probabilipy is an essential quantity in renormalization group
(RG) approaches to percolation problems [1-3, was called the crossing probability
by Langlandset al [4,5] and the spanning probability by Ziff [6]. In the limit — oo,
E,(L, p) approaches the step functi@np — pc), wherepc is the critical threshold [7]. In
this case, if we writeE, ~ (p — pc)?, then the critical exponent is zero. ThereforeE), is

also an ideal quantity for studying finite-size scaling functions and universality because we
need not scalé&, to plot it as a function of the scaling variable [7-11]. There have already
been extensive studies &, for percolation on two-dimensional (2d) lattices [2—6, 8-12].
Using a histogram Monte Carlo simulation method (HMCSM) [2, 3], in this letter we study
finite-size scaling and universality @, for percolation on 3d lattices.

In 1992, Langlands, Pichet, Pouliot, and Saint-Aubin (LPPS) [4] proposed that when
aspect ratios for square (sq), honeycomb (hc), and plane triangular (pt) lattices are in the
proportions 1+/3:4/3/2, then site and bond percolation on such lattices have the same
value of E, at the critical point. In 1992, Cardy used a conformal theory to write down
a formula for critical E, as a function of aspect ratio for percolation on lattices with
free boundary conditions [5], which was confirmed by LPPS’s numerical calculations [4].
Cardy and LPPS did not discuss the valuesEgffor p # pc. In 1995-1996, we applied
the HMCSM to calculateE,, the percolation probability?, and the probability of finding
exactly n percolating clustersy,, for site and bond percolation on finite sq, hc, and pt
lattices [11-14] using the scaling varialde= (p — pc)LY". By using the LPPS relative
proportions of aspect ratios [4] and non-universal metric factors [15], we found universal
finite-size scaling functions foE,, P, and W, of six different site and bond percolation
models on planar lattices [11-14].
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In order to investigate the universality of criticB], in higher dimensions, Stauffet al
[16, 17] performed a series of simulations for bond and site—bond percolation on three- to
six-dimensional hypercubic lattices. In particular, they found that for both bond and site—
bond percolation on cubic lattices with free boundary conditiBpeL, pc) approaches 0.42
for L up to 1001 using th&; percolation rule defined by Reynoldsal [1]. Since Stauffer
et al did not consider the universality of criticdl, for different types of lattices and their
data are not very precise, more work on the universality of criti;afor 4 > 3 is needed.

In this letter, we use the HMCSM [2] to calculatg, for bond percolation on simple
cubic (sc) and body-centred cubic (bcc) lattices, and site percolation on sc lattices, which
have free boundary conditions. The bonds (sites) of the first plane are randomly occupied
with probability p as are other planes of the lattices. TRgspanning rule considered by
Reynoldset al [1] is used to define percolating clusters. We find thgtfor such systems
has very good finite-size scaling behaviour and the value pfat the critical point is
universal and is 265+ 0.005, which is different from the value 0.42 obtained by Stauffer
and his coworkers [16]. To check the reliability of our result, we prepared two independent
computer programs. The results obtained from the two programs are consistent.

In this letter, both sc and bcc lattices are considered to be a cubic system, which is
described by arl. x L x L lattice. Therefore, a 2 2 x 2 bcc lattice includes eight sites at
the corner and one site in the centre. Here we define the effective linear dimension of the
lattice, Leg, @s the cubic root of the total number of lattice sites. For exaniplejs equal
to 2 and 9/3 for the 2x 2 x 2 sc lattice and X 2 x 2 bcc lattice, respectively.
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Figure 1. The existence probabilit¢, (L, p) for bond percolation (BP) on bcc lattices, BP on
sc lattices, and site percolation (SP) on sc lattices.

Here we briefly describe the HMCSM for bond percolationloix L x L sc and bcc
lattices. The extension to site percolation is straightforward. In bond percolation on a
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Figure 2. The calculatedp¢(L1, L2) — po(G) as a function of(Ll);ﬁl/“, where pc(L1, Lp) is

obtained from equation (4),ef is the cubic root of the number of lattice sites, and values of
po(G) for BP on bcc lattice, BP on sc lattice, and SP on sc lattice are 0.180, 0.245, and 0.310,
respectively. The symbols, V andJ on the vertical axis correspond to180 25+ 0.000 15,

0.248 810+ 0.000050, and 311 605+ 0.000 010, respectively.

d-dimensional latticeG of N sites, E bonds, and linear dimensiah, each bond ofG is
occupied with probabilityp, where 0< p < 1. A cluster which extends from a given side

of G to the opposite side is a percolating cluster. The subgraph with percolating clusters is
a percolating subgraph and is denoteddy, otherwise the subgraph is an non-percolating
subgraph. Then, we have

E,(L,p)=)_ p" (@ — p* (1)

G,

whereb(G;) is the number of occupied bonds Gfp

To carry out HMCSM, we first choose different values ofp. For a givenp = p;,
1 < j < w, we generateNy different subgraph<;’. The data obtained from the Ny
different G’ are then used to construct two arrays of numbers of le#gthith elements
N,(b) and N¢(b), 0 < b < E, which are, respectively, the total numbers of percolating
subgraphs witlb occupied bonds and non-percolating subgraphs witkecupied bonds. If
wNg is very large, we can use the histograms to calculate approxif)ater any value of
the bond occupation probability [2]:

)

Byt =Y P ptei D
? — N, (b) + Ny (b)

If we obtain E,(L1, p) and E,(Lz, p) for two similar latticesG, and G, of linear
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Figure 3. The calculated criticak), (L, p¢) for BP on bcc lattices, BP on sc lattices, and SP on
sc lattices as a function of/Leg.

dimensionsL; and L,, respectively, the RG transformation frofh to G, is given by
E,(Ly, p') = E,(L1, p) 3

which gives the renormalizeg’ as a function ofp. The fixed point of (3) gives the critical
point pe, i.e.

E,(L2, pc) = Ep(L1, po). 4

The p. of (4) depends onL; and L, and will be denoted byp.(Li, Ly). For site
percolation on square lattices, tdtial [18] found thatp.(L1, L,) obtained by cell-to-cell RG
transformation approaches its limiting valyg, quicker than cell-to-site RG transformation
and the cell-to-cell scheme is insensitive to the scaling power used in the extrapolation of
Pc-

We use (2) to evaluat&, (L, p) for bond percolation (BP) on sc and bcc lattices and
a similar equation to evaluatg, (L, p) for site percolation (SP) on sc lattices for several
linear dimensions of the lattices. Typical results for BP onx680 x 60 and 80x 80 x 80
bcc lattices, BP on 8& 80 x 80 and 100x 100x 100 sc lattices, and SP on 8080 x 80
and 128x 128 x 128 sc lattices are shown in figure 1.

For BP on sc lattices, pairs of linear dimensiois,(L,) for equation (4) are chosen
to be (16, 8), (32, 16), (64, 32), (80, 64), and (100, 80) and the correspopgling, L,) are
0.25241+ 0.00012, 0249 76+ 0.00009, 024897+ 0.00005, 0248 90+ 0.00006, and
0.248 87+ 0.000 06, respectively. We plot these data as a functiofLef;'" in figure 2,
where the numerical value of (= v™1) = 1.14+0.01 [19] is used. As{Ll)gf}l/” approaches
zero, the values opc(L1, L) approach the value of 2488104 0.000050 obtained by ziff
and Stell [19], which is represented by a down triangle on the vertical axis of figure 2.
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Figure 4. The calculatedE, of BP on bcc lattices, BP on sc lattices, and SP on sc lattices as a
function of x, wherex = (p — pc)Lg’ﬂ. The finite-size scaling function iB (x).

For SP on sc lattices, pairs of linear dimensiohs, (L,) are chosen to be (16, 8), (32, 16),
(64, 32), (80,64), and (128, 80) and the correspongigd.1, L») are 0313 774 0.000 08,
0.312 065+ 0.000 08, 0311 70+ 0.00009, 0311537+ 0.00011, and (811 62+ 0.000 12,
respectively. These values shown in figure 2 approach the value8bi &5+ 0.000010
obtained by Zziff and Stell [19], which is denoted by a square on the vertical axis of figure 2.
For BP on bcc lattices, pairs of linear dimensionhs, (L) are chosen to be (10, 8), (20, 10),
(40, 20), (60, 40), and (80, 60) and the correspondipd.i1, L) are 018367+ 0.000 12,
0.181 44+ 0.00006, 018055+ 0.00007, 018036+ 0.00007, and (180 32+ 0.000 06,
respectively. These values shown in figure 2 approach the valuel80 @5+ 0.000 15
obtained by Adleret al [20], which is denoted by a up triangle on the vertical axis of
figure 2.

The critical E,(L, pc)'s evaluated afp. = 0.2488, 0.3116, and 0.1803 for BP on sc
lattices, SP on sc lattices, and BP on bcc lattices, respectively, are shown in figure 3, in
which the horizontal axis is/L.¢. The numbers of samples (i.e. the value\g{) for BP on
sc lattices are 50 000, 90 000, 90 000, 90 000, 450 000, and 450 0Q0=£at00, 80, 64, 32,

16, and 8, respectively. The numbers of samples for BP on bcc lattices are 50 000, 90 000,
90000, 270000, 450000, and 900 000 foe= 80, 60, 40, 20, 10, and 8, respectively. The
numbers of samples for SP on sc lattices are 90000, 90 000, 180000, 180000, 450 000,
and 900000 forL = 128, 64, 32, 16, and 8, respectively. Based on visual evaluation of
figure 3, we extrapolate that the curves for BP and SP on sc lattices and BP on bcc lattices
all approach values of.265+ 0.005 as ¥ Lt — O.

Using the numerical values of (= v™1) = 1.144 0.01 [19] and p. calculated in this
letter, we plotE,(L, p) as a function ofx = (p — pc)Lgffr in figure 4, which shows that
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Figure 5. Results for two independent calculations Bf and the percolation probability

as a function ofp for BP on a 64x 64 x 64 sc lattice with free boundary conditions aRd
spanning rule. TheZ, functions are represented by full and dotted curves. FHanctions are
represented by dashed and long-dashed curves. The vertical full line goes through the critical
point pe.

E, has well defined finite-size scaling behaviour for these three models and the obtained
finite-size scaling function is denoted #(x). Since we obtain the nice finite-size scaling
behaviour shown in figure 4, we expect that our critical vafiye= 0.2654 0.005 can well
representt, (L, pc) asL — oo. However, our valueE, = 0.265+ 0.005 is quite different

from 0.42 obtained by Stauffest al [16].

To check the reliability of our result, we used both FORTRAN and C computer languages
and different random number generators to prepare two independent computer programs.
Typical calculated results foE, and the percolation probabilit® of bond percolation on
a 64x 64 x 64 sc lattice are plotted in figure 5, which shows that the results obtained from
two programs are consistent.

In [21], Hu pointed out that Hu, Lin and Chen (HLC) [11] and Hovi and Aharony
(HA) [22] used different definitions of periodic boundary conditions so that HLC and HA
obtained different criticalE, for L x L square lattices. The inconsistency of our critical
E,, 0.265+ 0.005, and that of Stauffeet al [16], 0.42, suggests that the two groups use
different definitions offree boundary conditions

In summary, we have found universality of critical, for site and bond percolation
on sc and bcc lattices. We have also found universality of criti¢alfor site and bond
percolation on 3d lattices, which will be published elsewhere [23].

We thark J G Dushoff for a critical reading of the paper. This work was supported by
the National Science Council of the Republic of China (Taiwan) under grant Nos NSC
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